

Super Thermal-Conductive Sheets (MANION)

By applying its unique magnetic filed orientation technology, SEKISUI POLYMATECH has succeeded in producing a thermal conductive sheet that allows optimum use of the high thermal conductivity of carbon fiber without sacrificing the flexibility and adhesive performance of polymer.

Super Thermal-conductive Sheets are ideal for cooling high-heat sources such as CPUs, GPUs and high energy-density LEDs. The low-molecular siloxane content is no more than 70ppm, making possible to use the product near contact.

By eliminating surface of polymer, Super Thermal-conductive Sheets focus on improving thermal conductivity of contact surface and this grade is specialized in high thermal conductivity more than double-sided adhesive grades.

This grade has high thermal conductivity with flexibility by adjusting our recipe.

It is enable higher thermal conductivity of 25W/m • K with sustaining flexibility by adjusting our formulation design. MANION-ST is a very thin sheet and can be alternative use of grease.

Image of carbon fiber orientation

Characteristics

Specifications	Unit	MANION35(E20)	MANION50a	MANION-ST	MANION-D5	MANION-SC
Appearance	_					
Features		Double-sided Non-adhesive	Double-sided Non-adhesive	Double-sided Non-adhesive	Double-sided Non-adhesive	Double-sided Non-adhesive
Thermal Conductivity ^{※1}	W/(m • K)	16	17	25	25	25
Hardness	TypeE	20	50	40	22	22
	ТуреОО	40	75	65	45	50
Specific Gravity	_	2.4	2.4	2.1	1.9	1.85
Breakdown Strength	AC kV/mm	<0.1	<0.1	<0.1	<0.1	<0.1
Flame Retardance	UL 94	V-0	V-0	V-0	НВ	V-0
Thickness	mm	0.5 ~ 3.0	0.2 ~ 3.0	0.2 ~ 0.3	1.0 ~ 3.0	1.0 ~ 3.0
Operating Temperature Range	°C	-40 ∼ 150	-40 ∼ 150	-40 ∼ 150	-40 ∼ 150	-40 ∼ 150

X1 Thermal conductivity is based on ASTM D5470 and measured under 20% of compression.

Comparison of Thermal Resistance

Comparison of Compressibility

* Numerical values shown in the graphs and table are actual measured, not product standard values.

Thermal-Conductive Sheets TIMLIGHT

(High Thermal Conductive Series)

By applying its unique magnetic filed orientation technology, SEKISUI POLYMATECH has succeeded in producing a thermal conductive sheet that allows optimum use of the high thermal conductivity of carbon fiber without sacrificing the flexibility and adhesive performance of polymer.

Super Thermal-conductive Sheets are ideal for cooling high-heat sources such as CPUs, GPUs and high energy-density LEDs. The low-molecular siloxane content is no more than 70ppm, making possible to use the product near contact.

This grade has been given features of high thermal conductivity and double-sided adhesive by making use of tackiness of polymer. It is excellent in adhesion and followability.

PT-V, for example, has variety of customization such as adjusting hardness and handling property.

Characteristics

Specifications	Unit Grade	PT-UT	PT-V	PT-VII	
	-				
Features	_	Double-sided adhesive	Double-sided adhesive	Double-sided adhesive	
Thermal Conductivity ^{※1}	W/(m⋅K)	6	12	15	
Hardness	TypeE	30	30	35	
	ТуреОО	55	55	60	
Specific Gravity	_	1.8	2.4	2.3	
Breakdown Strength	AC kV/mm	1.0	0.9	0.5	
Flame Retardance	UL 94	V-0	V-0	Less than 3.0t : V-1 More than 3.0t : V-0	
Thickness	mm	0.5 ~ 3.0	0.5 ~ 3.0	0.5 ~ 3.0	
Operating Temperature Range	°C	-40 ∼ 150	-40 ∼ 150	-40 ∼ 150	

X1 Thermal conductivity is based on ASTM D5470 and measured under 20% of compression.

^{*} Specifications of PT-VII is subject to change without any notification.

Comparison of Thermal Resistance 0.8 △ PT-UT Thermal Resistance (°C· in²/W) 0.7 PT-V 0.6 PT-V II 0.5 ■ MANION35(E20) 0.4 0.3 0.2 0.1 0.0 0.0 1.5 3.0 Thickness (mm)

Based on ASTM D5470 (20% Compressed Thermal Resistance Value)

^{*}Numerical values shown in the graphs and table are actual measured, not product standard values.